Closing Tue:15.1, 15.2Closing Thu:15.3, 15.4Midterm 2 is Tuesday, March 1It covers 13.3/4, 14.1/3/4/7, 15.1-15.4

15.3 Double Integrals over General Regions

For the rectangular region, *R*, given by

 $a \leq x \leq b$, $c \leq y \leq d$ we learned:

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, dy \right) dx$$
$$= \int_{c}^{d} \left(\int_{a}^{b} f(x,y) \, dx \right) dy$$

In 15.3, we discuss regions, *R*, other than rectangles.

Type 1 Regions	Type 2 Regions
(Top/Bot)	(Left/Right)
Given a particular x in	Given a particular y in
the range,	the range,
$a \le x \le b$, we have	$c \le y \le d$, we have
$g_1(x) \leq y \leq g_2(x)$	$n_1(y) \le x \le n_2(y)$
$\int_{a}^{b} \left(\int_{a}^{g_{2}(x)} f(x, y) dy \right) dx$	$\int_{a}^{d} \left(\int_{a}^{h_2(y)} f(x, y) dx \right) dy$
$a \setminus g_1(x)$	$c \ h_1(y) $

The surface $z = x + 3y^2$ over the rectangular region R = [0,1] x [0,3]

The surface $z = x + 3y^2$ over the triangular region with corners (x,y) = (0,0), (1,0), and (1,3).

The surface z = x + 1 over the region bounded by y = x and $y = x^2$.

The surface z = sin(y)/y over the triangular region with corners at (0,0), (0, $\pi/2$), ($\pi/2$, $\pi/2$).

An applied problem:

Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

1. Describe surface:

Slope in y-direction = 0 Slope in x-direction = -4/10 = -0.4Also the plane goes through (0, 0, 0) Thus, the plane that describes the bottom of the pool is: z = -0.4x + 0y 2. Describe region:

The line on the right is goes through (20,0) and (25,25), so it has slope = 5 and it is given by the equation

y = 5(x-20) = 5x - 100

or x = (y+100)/5 = 1/5 y + 20The best way to describe this region is by thinking of it as a left-right region. On the left, we always have x = 0On the right, we always have x = 1/5 y + 20

Therefore, we have

$$\int_{0}^{25} \left(\int_{0}^{\frac{1}{5}y+20} -0.4 \ x \ dx \right) dy = -741. \ \overline{6} \ \text{ft}^{3}$$