Closing Tue: $\quad 15.1,15.2$
Closing Thu:
15.3, 15.4

Midterm 2 is Tuesday, March 1
It covers 13.3/4, 14.1/3/4/7, 15.1-15.4

15.3 Double Integrals over General Regions

For the rectangular region, R, given by

$$
a \leq x \leq b, \quad c \leq y \leq d
$$

we learned:

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \\
& =\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
\end{aligned}
$$

In 15.3, we discuss regions, R, other than rectangles.

Type 1 Regions (Top/Bot)	Type 2 Regions (Left/Right)
(he range, $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$, we have $\mathrm{g}_{1}(\mathrm{x}) \leq \mathrm{y} \leq \mathrm{g}_{2}(\mathrm{x})$	Given a particular y in the range, $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$, we have $\mathrm{h}_{1}(\mathrm{y}) \leq \mathrm{x} \leq \mathrm{h}_{2}(\mathrm{y})$
$\left.\begin{array}{l}\text { Given a particular } x \text { in } \\ \text { the } \\ \int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)}\right.\end{array} f(x, y) d y\right) d x$	$\int_{c}^{d}\left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right) d y$

The surface $z=x+3 y^{2}$ over the rectangular region $R=[0,1] \times[0,3]$

The surface $z=x+3 y^{2}$ over the triangular region with corners $(x, y)=(0,0),(1,0)$, and $(1,3)$.

The surface $z=x+1$ over the region bounded by $y=x$ and $y=x^{2}$.

The surface $z=\sin (y) / y$ over the triangular region with corners at $(0,0),(0, \pi / 2),(\pi / 2, \pi / 2)$.

An applied problem:
Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

1. Describe surface:

Slope in y -direction $=0$
Slope in x-direction $=-4 / 10=-0.4$
Also the plane goes through ($0,0,0$)
Thus, the plane that describes the bottom of the pool is: $\quad \mathbf{z = - 0 . 4 x}+\mathbf{0 y}$
2. Describe region:

The line on the right is goes through $(20,0)$ and $(25,25)$, so it has slope $=5$ and it is given by the equation

$$
\begin{array}{ll}
& y=5(x-20)=5 x-100 \\
\text { or } & x=(y+100) / 5=1 / 5 y+20
\end{array}
$$

The best way to describe this region is by thinking of it as a left-right region.
On the left, we always have $x=0$
On the right, we always have $x=1 / 5 y+20$
Therefore, we have

$$
\int_{0}^{25}\left(\int_{0}^{\frac{1}{5} y+20}-0.4 x d x\right) d y=-741 . \overline{6} \mathrm{ft}^{3}
$$

